723=-16t^2+729

Simple and best practice solution for 723=-16t^2+729 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 723=-16t^2+729 equation:



723=-16t^2+729
We move all terms to the left:
723-(-16t^2+729)=0
We get rid of parentheses
16t^2-729+723=0
We add all the numbers together, and all the variables
16t^2-6=0
a = 16; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·16·(-6)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*16}=\frac{0-8\sqrt{6}}{32} =-\frac{8\sqrt{6}}{32} =-\frac{\sqrt{6}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*16}=\frac{0+8\sqrt{6}}{32} =\frac{8\sqrt{6}}{32} =\frac{\sqrt{6}}{4} $

See similar equations:

| 38(12-2.5x)=13(2x-7)+14.4 | | 60=20-5x | | 2(3y-1.9)+0.2=4(5y-0.9) | | X=91421.97111x | | 5n20=16 | | -3x+50=x+18 | | -3x=4-x | | x^2-x=153 | | -3x=2- | | 15x2-14x+3=0 | | –3g=–8+g | | 3+6y=5y | | 9a-6=15(a-3) | | 7+m=-7 | | 4b−8=52 | | 7a-a=15(a-5) | | s-3=-19 | | 12x+8(1-5x)=-188 | | 7.9a+3=2.7a+22.76 | | 120/80=x/100 | | 4.3x+38=5.8x+8 | | 1+13(x+1)=183 | | 10(x-2)=-160 | | 3.6x+4.44=-4.2 | | 11(v+8)=209 | | x+10.4=100+x | | x+5=4x+29 | | 4.3t+6.79=-3.1 | | K-2+6k=5 | | 3+6x+x=-11 | | -3.6y+3.54=-3.3 | | 0.7(2x-1)=0.5x-0.3 |

Equations solver categories